Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# **Redetermination of** *cis***-diacetonitrile**bis(2,2'-bipyridine)ruthenium(II) hexafluorophosphate

#### Feng Xu and Wei Huang\*

State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Department of Chemistry and Chemical Engineering, Nanjing University–Jinchuan Group Ltd Joint Laboratory of Metal Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China Correspondence e-mail: whuang@nju.edu.cn

Received 5 June 2007; accepted 6 July 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean  $\sigma$ (C–C) = 0.008 Å; disorder in main residue; R factor = 0.048; wR factor = 0.098; data-to-parameter ratio = 10.5.

The title compound,  $[Ru(C_{10}H_8N_2)_2(CH_3CN)_2](PF_6)_2$ , a sixcoordinate ruthenium(II) complex, crystallizes in the monoclinic *C*2/*c* space group showing different symmetry from the previously reported *P*2<sub>1</sub>/*n*. A crystallographic twofold rotation axis passes through the Ru atom. The two C atoms and H atoms of one acetonitrile ligand are disordered over two positions, with site occupancy factors of *ca* 0.55 and 0.45. Three F atoms are disordered over two positions, with similar site occupancy factors.

#### **Related literature**

For the earlier report of this crystal structure, see: Heeg *et al.* (1985). For analogous complexes, see: Chattopadhyay *et al.* (2004); Cordes *et al.* (1992).



# Experimental

#### Crystal data

 $[Ru(C_{10}H_8N_2)_2(C_2H_3N)_2](PF_6)_2$   $M_r = 785.49$ Monoclinic, C2/c a = 17.2499 (18) Å b = 10.5008 (11) Å c = 16.6600 (17) Å  $\beta = 96.201$  (2)°

#### Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000)  $T_{\rm min} = 0.892, T_{\rm max} = 0.931$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.048$ | 12 restraints                                             |
|---------------------------------|-----------------------------------------------------------|
| $wR(F^2) = 0.098$               | H-atom parameters constrained                             |
| S = 0.99                        | $\Delta \rho_{\rm max} = 0.54 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 2641 reflections                | $\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$  |
| 251 parameters                  |                                                           |

V = 3000.1 (5) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.16 \times 0.12 \times 0.10 \text{ mm}$ 

7231 measured reflections

2641 independent reflections

1718 reflections with  $I > 2\sigma(I)$ 

 $\mu = 0.73 \text{ mm}^{-1}$ 

T = 291 (2) K

 $R_{\rm int} = 0.035$ 

Z = 4

#### Table 1

Selected geometric parameters (Å, °).

| Ru1–N3                 | 2.012 (4)                | C6-N2     | 1.340 (5)  |
|------------------------|--------------------------|-----------|------------|
| Ru1-N1                 | 2.016 (3)                | C10-N2    | 1.319 (6)  |
| Ru1-N2                 | 2.045 (3)                | C11-N3    | 1.251 (14) |
| C1-N1<br>C5-N1         | 1.358 (5)<br>1.303 (5)   | C11′-N3   | 1.200 (15) |
| N3-Ru1-N1<br>N3-Ru1-N2 | 92.31 (17)<br>89.42 (15) | N1-Ru1-N2 | 79.13 (15) |
|                        |                          |           |            |

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors are indebted to the Major State Basic Research Development Program (No. 2006CB806104) and the National Natural Science Foundation of China (project No. 20301009) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2089).

#### References

Chattopadhyay, S. K., Mitra, K., Biswas, S., Naskar, S., Mishra, D., Adhikary, B., Harrison, R. G. & Cannon, J. F. (2004). *Transition Met. Chem.* **29**, 1–6.

Cordes, A. W., Durham, B., Pennington, W. T., Kuntz, B. & Allen, L. (1992). J. Crystallogr. Spectrosc. Res. 22, 699–704.

Heeg, M. J., Kroener, R. & Deutsch, E. (1985). Acta Cryst. C41, 684-686.

Bruker (2000). *SMART* (Version 5.622), *SAINT* (Version 6.02a), *SADABS* (Version 2.03) and *SHELXTL* (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2007). E63, m2114 [doi:10.1107/S1600536807033065]

# Redetermination of cis-diacetonitrilebis(2,2'-bipyridine)ruthenium(II) hexafluorophosphate

## F. Xu and W. Huang

#### Comment

The structures of *cis*-bis(acetonitrile)bis(2,2'-bipyridine) ruthenium(II) diperchlorate (Chattopadhyay *et al.*, 2004), *trans*-bis(acetonitrile)bis(2,2'-bipyridine) ruthenium(II) diperchlorate (Cordes *et al.*, 1992), and the title complex (Heeg *et al.*, 1985) have been reported previously. We present herein the crystal structure of the title compound (I) again with the same unit cell as Heeg *et al.*'s within the experimental error, but it crystallizes in the monoclinic C2/c space group other than the earlier  $P2_1/n$ .

The atom-numbering scheme of compound (I) is shown in Fig.1, while selected bond distances and angles are given in Table 1. The Ru—N bond lengths and bond angles are comparable with those in literature. The presence of acetonitrile molecules in this Ru(II) complex can be verified by routine characterization. The main difference between our data and Heeg *et al.*'s is the assignment of the space group. Our results demonstrate the higher symmetry of molecule (C2/c instead of  $P2_1/n$ ), and two carbon atoms of monodentate acetonitrile molecules are refined disorderly. We failed to solve this structure by assigning the reported  $P2_1/n$  space group.

#### Experimental

The title complex (I) was obtained by refluxing equal molar ratio of Ru(bpy)<sub>2</sub>Cl<sub>2</sub>·H<sub>2</sub>O (0.02 g, 0.04 mmol) and a pre-synthesized schiff base, 4-[2-(pyridin-4-ylimino)-ethyl]-benzoic acid (0.01 g, 0.04 mmol) in 30 ml acetonitrile for 1 h. The mixture was cooled to room temperature and a 10 ml saturated NH<sub>4</sub>PF<sub>6</sub> solution was added. Orange single-crystal of (I) suitable for the X-ray diffraction analysis was grown directly from the mother liquor as a by-product. Elemental analysis, calculated for RuC<sub>24</sub>H<sub>22</sub>N<sub>6</sub>P<sub>2</sub>F<sub>12</sub>: C, 36.70; H, 2.82; N, 10.70%; found: C, 36.55; H, 2.99; N, 10.48%. IR (KBr): 3123, 3094, 3003, 2938, 1606, 1468, 1449, 1314, 1276, 1243, 1164, 1040, 833, 762, and 557 cm<sup>-1. 1</sup>H NMR (*d*<sub>6</sub>-DMSO):  $\delta$  (p.p.m.) 9.364 (2H), 8.778 (2H), 8.649 (2H), 8.353 (2H), 8.031 (2H), 7.931 (2H), 7.575 (2H), 7.373 (2H), 2.437 (6H).

#### Refinement

The non-hydrogen atoms were refined anisotropically, whereas the H atoms were placed in geometrically idealized positions (C-H = 0.93-0.96 Å) and refined as riding atoms, with  $U_{iso}(H) = 1.5U_{eq}$  (for methyl C) or  $U_{iso}(H) = 1.2U_{eq}(C)$  for the other C atoms. F2, F3 and F6 atoms of hexafluorophosphate are refined over two sites with 0.557 (17):0.443 (17) site occupancy factors. Due to the disorder of acetonitrile molecules, the 'similar  $U^{ij}$ ' restraints (SIMU) were used to restrain the  $U^{ij}$  components of neighboring atoms (N3-C11 and N3-C11', six for each). The effective standard deviations is set as 0.004 for N3-C11 and 0.003 for N3-C11', respectively.

# Figures



Fig. 1. A drawing of complex (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and the H atoms are omitted for clarity.

# cis-diacetonitrilebis(2,2'-bipyridine)ruthenium(II) hexafluorophosphate

| Crystal data                              |                                                      |
|-------------------------------------------|------------------------------------------------------|
| $[Ru(C_{10}H_8N_2)_2(C_2H_3N)_2](F_6P)_2$ | $F_{000} = 1560$                                     |
| $M_r = 785.49$                            | $D_{\rm x} = 1.739 {\rm ~Mg~m}^{-3}$                 |
| Monoclinic, C2/c                          | Mo <i>K</i> $\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -C 2yc                       | Cell parameters from 1829 reflections                |
| <i>a</i> = 17.2499 (18) Å                 | $\theta = 2.3 - 19.1^{\circ}$                        |
| b = 10.5008 (11)  Å                       | $\mu = 0.73 \text{ mm}^{-1}$                         |
| c = 16.6600 (17)  Å                       | T = 291 (2) K                                        |
| $\beta = 96.201 \ (2)^{\circ}$            | Block, orange                                        |
| $V = 3000.1 (5) \text{ Å}^3$              | $0.16\times0.12\times0.10~mm$                        |
| Z = 4                                     |                                                      |

#### Data collection

| diffractometer                                                                    | ident reflections         |
|-----------------------------------------------------------------------------------|---------------------------|
| Radiation source: fine-focus sealed tube 1718 reflection                          | ons with $I > 2\sigma(I)$ |
| Monochromator: graphite $R_{\rm int} = 0.035$                                     |                           |
| $T = 291(2) \text{ K}$ $\theta_{\text{max}} = 25.0^{\circ}$                       |                           |
| $\varphi$ and $\omega$ scans $\theta_{min} = 2.3^{\circ}$                         |                           |
| Absorption correction: multi-scan (SADABS; Bruker, 2000) $h = -20 \rightarrow 18$ |                           |
| $T_{\min} = 0.892, \ T_{\max} = 0.931$ $k = -9 \rightarrow 12$                    |                           |
| 7231 measured reflections $l = -19 \rightarrow 15$                                |                           |

### Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map                               |
|---------------------------------|------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: inferred from neighbouring sites                           |
| $R[F^2 > 2\sigma(F^2)] = 0.048$ | H-atom parameters constrained                                                      |
| $wR(F^2) = 0.098$               | $w = 1/[\sigma^2(F_0^2) + (0.0345P)^2 + 1.566P]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| <i>S</i> = 0.99                 | $(\Delta/\sigma)_{\rm max} < 0.001$                                                |

2641 reflections

 $\Delta \rho_{\text{max}} = 0.54 \text{ e } \text{\AA}^{-3}$ 

251 parameters12 restraints

 $\Delta \rho_{\text{min}} = -0.31 \text{ e Å}^{-3}$ Extinction correction: none

Primary atom site location: structure-invariant direct methods

### Special details

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x           | У           | Z          | $U_{\rm iso}^*/U_{\rm eq}$ | Occ. (<1)  |
|------|-------------|-------------|------------|----------------------------|------------|
| Ru1  | 0.0000      | 0.97826 (5) | 0.7500     | 0.0657 (2)                 |            |
| C1   | 0.0270 (3)  | 1.1608 (4)  | 0.8777 (3) | 0.0689 (12)                |            |
| C2   | 0.0579 (4)  | 1.2636 (5)  | 0.9204 (3) | 0.1081 (19)                |            |
| H2   | 0.0346      | 1.2943      | 0.9644     | 0.130*                     |            |
| C3   | 0.1238 (5)  | 1.3207 (6)  | 0.8976 (4) | 0.147 (3)                  |            |
| Н3   | 0.1459      | 1.3898      | 0.9266     | 0.177*                     |            |
| C4   | 0.1562 (4)  | 1.2770 (7)  | 0.8338 (4) | 0.145 (3)                  |            |
| H4   | 0.2005      | 1.3153      | 0.8174     | 0.174*                     |            |
| C5   | 0.1225 (3)  | 1.1744 (6)  | 0.7932 (3) | 0.0982 (17)                |            |
| Н5   | 0.1456      | 1.1433      | 0.7492     | 0.118*                     |            |
| C6   | -0.0394 (3) | 1.0877 (4)  | 0.8992 (3) | 0.0652 (12)                |            |
| C7   | -0.0783 (3) | 1.1116 (5)  | 0.9658 (3) | 0.0906 (15)                |            |
| H7   | -0.0651     | 1.1818      | 0.9985     | 0.109*                     |            |
| C8   | -0.1358 (3) | 1.0317 (7)  | 0.9831 (3) | 0.1064 (19)                |            |
| H8   | -0.1619     | 1.0462      | 1.0282     | 0.128*                     |            |
| C9   | -0.1549 (3) | 0.9330 (7)  | 0.9356 (3) | 0.120 (2)                  |            |
| Н9   | -0.1944     | 0.8777      | 0.9470     | 0.144*                     |            |
| C10  | -0.1151 (3) | 0.9134 (6)  | 0.8687 (3) | 0.1113 (19)                |            |
| H10  | -0.1285     | 0.8435      | 0.8357     | 0.134*                     |            |
| C11  | 0.1279 (11) | 0.7826 (11) | 0.8336 (6) | 0.115 (3)                  | 0.546 (11) |
| C12  | 0.1854 (8)  | 0.6918 (10) | 0.8694 (6) | 0.109 (5)                  | 0.546 (11) |
| H12A | 0.2363      | 0.7293      | 0.8712     | 0.163*                     | 0.546 (11) |
| H12B | 0.1744      | 0.6717      | 0.9232     | 0.163*                     | 0.546 (11) |
| H12C | 0.1837      | 0.6154      | 0.8376     | 0.163*                     | 0.546 (11) |
| C11' | 0.0731 (12) | 0.7344 (15) | 0.8298 (8) | 0.120 (2)                  | 0.454 (11) |
| C12' | 0.1042 (13) | 0.6169 (14) | 0.8608 (8) | 0.141 (9)                  | 0.454 (11) |
|      |             |             |            |                            |            |

# supplementary materials

| H12D | 0.0652       | 0.5539      | 0.8676       | 0.212*      | 0.454 (11) |
|------|--------------|-------------|--------------|-------------|------------|
| H12E | 0.1392       | 0.5854      | 0.8244       | 0.212*      | 0.454 (11) |
| H12F | 0.1330       | 0.6351      | 0.9122       | 0.212*      | 0.454 (11) |
| F1   | 0.6154 (3)   | 0.8889 (5)  | 0.6588 (3)   | 0.220 (3)   |            |
| F2   | 0.7125 (6)   | 1.035 (2)   | 0.5688 (7)   | 0.183 (7)   | 0.559 (18) |
| F3   | 0.7302 (9)   | 0.9507 (18) | 0.6692 (13)  | 0.203 (8)   | 0.559 (18) |
| F4   | 0.6351 (8)   | 1.0821 (9)  | 0.6847 (6)   | 0.384 (7)   |            |
| F5   | 0.5853 (3)   | 1.0436 (9)  | 0.5748 (5)   | 0.288 (4)   |            |
| F6   | 0.7016 (15)  | 0.887 (2)   | 0.587 (2)    | 0.326 (13)  | 0.559 (18) |
| F2'  | 0.6890 (14)  | 1.1222 (15) | 0.5882 (13)  | 0.180 (9)   | 0.441 (18) |
| F3'  | 0.7146 (12)  | 1.006 (3)   | 0.7012 (8)   | 0.187 (11)  | 0.441 (18) |
| F6'  | 0.6389 (14)  | 0.9189 (12) | 0.5469 (6)   | 0.168 (8)   | 0.441 (18) |
| N1   | 0.0599 (2)   | 1.1177 (3)  | 0.8125 (2)   | 0.0642 (9)  |            |
| N2   | -0.0591 (2)  | 0.9896 (3)  | 0.8497 (2)   | 0.0687 (10) |            |
| N3   | 0.0682 (3)   | 0.8417 (4)  | 0.8050 (2)   | 0.1189 (17) |            |
| P1   | 0.65715 (12) | 0.9967 (2)  | 0.62417 (10) | 0.1139 (6)  |            |
|      |              |             |              |             |            |

# Atomic displacement parameters $(Å^2)$

|      | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$    |
|------|-------------|-------------|-------------|--------------|--------------|-------------|
| Ru1  | 0.0907 (4)  | 0.0551 (3)  | 0.0515 (3)  | 0.000        | 0.0074 (3)   | 0.000       |
| C1   | 0.085 (4)   | 0.057 (3)   | 0.061 (3)   | 0.000 (3)    | -0.008 (3)   | 0.000(2)    |
| C2   | 0.166 (6)   | 0.082 (4)   | 0.074 (4)   | -0.031 (4)   | 0.005 (4)    | -0.012 (3)  |
| C3   | 0.218 (8)   | 0.130 (6)   | 0.089 (5)   | -0.103 (6)   | -0.004 (5)   | -0.003 (4)  |
| C4   | 0.155 (6)   | 0.197 (8)   | 0.078 (5)   | -0.096 (6)   | -0.013 (5)   | 0.013 (5)   |
| C5   | 0.084 (4)   | 0.144 (5)   | 0.064 (3)   | -0.033 (4)   | -0.006 (3)   | 0.009 (3)   |
| C6   | 0.075 (3)   | 0.064 (3)   | 0.056 (3)   | 0.011 (3)    | 0.003 (2)    | 0.005 (2)   |
| C7   | 0.107 (4)   | 0.096 (4)   | 0.071 (4)   | 0.021 (4)    | 0.015 (3)    | -0.005 (3)  |
| C8   | 0.088 (4)   | 0.159 (6)   | 0.075 (4)   | 0.011 (4)    | 0.021 (3)    | 0.016 (4)   |
| C9   | 0.094 (4)   | 0.193 (7)   | 0.074 (4)   | -0.050 (5)   | 0.012 (4)    | 0.019 (4)   |
| C10  | 0.135 (5)   | 0.132 (5)   | 0.069 (4)   | -0.059 (4)   | 0.016 (4)    | -0.002 (3)  |
| C11  | 0.205 (7)   | 0.081 (5)   | 0.061 (4)   | 0.052 (4)    | 0.028 (5)    | 0.010 (4)   |
| C12  | 0.146 (12)  | 0.082 (8)   | 0.099 (8)   | 0.034 (8)    | 0.013 (7)    | 0.020 (6)   |
| C11' | 0.213 (6)   | 0.087 (4)   | 0.063 (4)   | 0.059 (4)    | 0.028 (4)    | 0.012 (3)   |
| C12' | 0.22 (2)    | 0.096 (11)  | 0.115 (11)  | 0.073 (13)   | 0.047 (12)   | 0.043 (9)   |
| F1   | 0.222 (5)   | 0.218 (5)   | 0.208 (5)   | -0.120 (4)   | -0.027 (4)   | 0.087 (4)   |
| F2   | 0.142 (7)   | 0.30 (2)    | 0.126 (7)   | 0.003 (13)   | 0.080 (6)    | 0.050 (12)  |
| F3   | 0.191 (11)  | 0.197 (13)  | 0.198 (16)  | 0.025 (9)    | -0.082 (11)  | 0.049 (11)  |
| F4   | 0.569 (16)  | 0.342 (11)  | 0.225 (8)   | 0.239 (12)   | -0.031 (10)  | -0.106 (8)  |
| F5   | 0.146 (4)   | 0.454 (12)  | 0.262 (7)   | 0.016 (6)    | 0.007 (5)    | 0.195 (8)   |
| F6   | 0.228 (19)  | 0.34 (2)    | 0.42 (3)    | 0.023 (18)   | 0.09 (2)     | -0.14 (2)   |
| F2'  | 0.217 (19)  | 0.117 (10)  | 0.193 (15)  | -0.078 (10)  | -0.044 (12)  | 0.073 (9)   |
| F3'  | 0.181 (15)  | 0.29 (2)    | 0.084 (7)   | -0.153 (17)  | 0.000 (8)    | -0.019 (9)  |
| F6'  | 0.26 (2)    | 0.150 (9)   | 0.084 (7)   | 0.009 (11)   | -0.018 (8)   | -0.029 (6)  |
| N1   | 0.068 (3)   | 0.069 (2)   | 0.054 (2)   | -0.006 (2)   | -0.0019 (19) | 0.0053 (18) |
| N2   | 0.081 (3)   | 0.072 (3)   | 0.053 (2)   | -0.017 (2)   | 0.0063 (19)  | 0.0030 (19) |
| N3   | 0.213 (5)   | 0.085 (3)   | 0.061 (2)   | 0.061 (3)    | 0.027 (3)    | 0.012 (2)   |
| P1   | 0.1182 (15) | 0.1435 (18) | 0.0797 (11) | -0.0289 (14) | 0.0096 (12)  | 0.0056 (12) |

Geometric parameters (Å, °)

| Ru1—N3 <sup>i</sup>                  | 2.012 (4)   | C9—C10         | 1.387 (7)  |
|--------------------------------------|-------------|----------------|------------|
| Ru1—N3                               | 2.012 (4)   | С9—Н9          | 0.9300     |
| Ru1—N1                               | 2.016 (3)   | C10—N2         | 1.319 (6)  |
| Ru1—N1 <sup>i</sup>                  | 2.016 (3)   | C10—H10        | 0.9300     |
| Ru1—N2                               | 2.045 (3)   | C11—N3         | 1.251 (14) |
| Ru1—N2 <sup>i</sup>                  | 2.045 (3)   | C11—C12        | 1.456 (13) |
| C1—N1                                | 1.358 (5)   | C12—H12A       | 0.9599     |
| C1—C2                                | 1.369 (6)   | C12—H12B       | 0.9601     |
| C1—C6                                | 1.455 (6)   | C12—H12C       | 0.9600     |
| С2—С3                                | 1.375 (8)   | C11'—N3        | 1.200 (15) |
| С2—Н2                                | 0.9300      | C11'—C12'      | 1.421 (15) |
| C3—C4                                | 1.335 (9)   | C12'—H12D      | 0.9600     |
| С3—Н3                                | 0.9300      | C12'—H12E      | 0.9600     |
| C4—C5                                | 1.368 (7)   | C12'—H12F      | 0.9601     |
| C4—H4                                | 0.9300      | F1—P1          | 1.490 (4)  |
| C5—N1                                | 1.303 (5)   | F2—P1          | 1.455 (10) |
| С5—Н5                                | 0.9300      | F3—P1          | 1.477 (12) |
| C6—N2                                | 1.340 (5)   | F4—P1          | 1.432 (7)  |
| C6—C7                                | 1.381 (6)   | F5—P1          | 1.495 (5)  |
| С7—С8                                | 1.354 (7)   | F6—P1          | 1.549 (17) |
| С7—Н7                                | 0.9300      | F2'—P1         | 1.571 (11) |
| C8—C9                                | 1.323 (8)   | F3'—P1         | 1.538 (15) |
| C8—H8                                | 0.9300      | F6'—P1         | 1.529 (10) |
| N3 <sup>i</sup> —Ru1—N3              | 89.1 (3)    | H12A—C12—H12F  | 145.9      |
| N3 <sup>i</sup> —Ru1—N1              | 174.27 (17) | H12C—C12—H12F  | 86.5       |
| N3—Ru1—N1                            | 92.31 (17)  | H12E—C12—H12F  | 65.8       |
| N3 <sup>i</sup> —Ru1—N1 <sup>i</sup> | 92.31 (17)  | N3—C11'—C12'   | 161.9 (19) |
| N3—Ru1—N1 <sup>i</sup>               | 174.27 (17) | C11'—C12'—H12C | 104.0      |
| N1—Ru1—N1 <sup>i</sup>               | 86.83 (19)  | C11'—C12'—H12D | 113.5      |
| N3 <sup>i</sup> —Ru1—N2              | 95.34 (16)  | H12C—C12'—H12D | 135.4      |
| N3—Ru1—N2                            | 89.42 (15)  | C11'—C12'—H12E | 108.0      |
| N1—Ru1—N2                            | 79.13 (15)  | H12D—C12'—H12E | 109.5      |
| N1 <sup>i</sup> —Ru1—N2              | 95.98 (15)  | C11'—C12'—H12F | 106.9      |
| N3 <sup>i</sup> —Ru1—N2 <sup>i</sup> | 89.42 (15)  | H12C—C12'—H12F | 80.2       |
| N3—Ru1—N2 <sup>i</sup>               | 95.34 (16)  | H12D—C12'—H12F | 109.5      |
| N1—Ru1—N2 <sup>i</sup>               | 95.98 (15)  | H12E—C12'—H12F | 109.5      |
| N1 <sup>i</sup> —Ru1—N2 <sup>i</sup> | 79.13 (15)  | C5—N1—C1       | 118.4 (4)  |
| N2—Ru1—N2 <sup>i</sup>               | 173.3 (2)   | C5—N1—Ru1      | 126.7 (4)  |
| N1—C1—C2                             | 120.4 (5)   | C1—N1—Ru1      | 114.8 (3)  |
| N1—C1—C6                             | 115.5 (4)   | C10—N2—C6      | 117.6 (4)  |
| C2—C1—C6                             | 124.1 (5)   | C10—N2—Ru1     | 127.0 (3)  |
| C1—C2—C3                             | 119.2 (6)   | C6—N2—Ru1      | 115.4 (3)  |
| C1—C2—H2                             | 120.4       | C11'—N3—C11    | 51.6 (9)   |

# supplementary materials

| С3—С2—Н2                                    | 120.4      | C11'—N3—Ru1 | 147.3 (12) |
|---------------------------------------------|------------|-------------|------------|
| C4—C3—C2                                    | 120.0 (6)  | C11—N3—Ru1  | 160.7 (9)  |
| С4—С3—Н3                                    | 120.0      | F4—P1—F2    | 121.0 (11) |
| С2—С3—Н3                                    | 120.0      | F4—P1—F3    | 97.1 (10)  |
| C3—C4—C5                                    | 118.2 (6)  | F2—P1—F3    | 80.2 (10)  |
| C3—C4—H4                                    | 120.9      | F4—P1—F1    | 91.5 (6)   |
| C5—C4—H4                                    | 120.9      | F2—P1—F1    | 146.6 (10) |
| N1C5C4                                      | 123.8 (6)  | F3—P1—F1    | 88.7 (6)   |
| N1—C5—H5                                    | 118.1      | F4—P1—F5    | 85.0 (6)   |
| С4—С5—Н5                                    | 118.1      | F2—P1—F5    | 97.0 (6)   |
| N2—C6—C7                                    | 121.4 (5)  | F3—P1—F5    | 177.1 (9)  |
| N2—C6—C1                                    | 114.1 (4)  | F1—P1—F5    | 93.2 (3)   |
| C7—C6—C1                                    | 124.4 (5)  | F4—P1—F6'   | 151.9 (10) |
| C8—C7—C6                                    | 119.3 (5)  | F2—P1—F6'   | 72.8 (13)  |
| С8—С7—Н7                                    | 120.4      | F3—P1—F6'   | 109.9 (15) |
| С6—С7—Н7                                    | 120.4      | F1—P1—F6'   | 81.8 (6)   |
| C9—C8—C7                                    | 120.0 (6)  | F5—P1—F6'   | 68.3 (8)   |
| С9—С8—Н8                                    | 120.0      | F4—P1—F3'   | 64.3 (9)   |
| С7—С8—Н8                                    | 120.0      | F2—P1—F3'   | 95.9 (8)   |
| C8—C9—C10                                   | 118.9 (6)  | F1—P1—F3'   | 91.2 (7)   |
| С8—С9—Н9                                    | 120.5      | F5—P1—F3'   | 149.1 (12) |
| С10—С9—Н9                                   | 120.5      | F6'—P1—F3'  | 142.6 (15) |
| N2-C10-C9                                   | 122.8 (5)  | F4—P1—F6    | 158.4 (15) |
| N2-C10-H10                                  | 118.6      | F2—P1—F6    | 64.1 (9)   |
| С9—С10—Н10                                  | 118.6      | F3—P1—F6    | 62.0 (18)  |
| N3—C11—C12                                  | 167.6 (14) | F1—P1—F6    | 82.8 (9)   |
| C11—C12—H12A                                | 109.0      | F5—P1—F6    | 116.1 (15) |
| C11—C12—H12B                                | 109.4      | F6'—P1—F6   | 47.9 (10)  |
| H12A—C12—H12B                               | 109.5      | F3'—P1—F6   | 94.8 (19)  |
| C11—C12—H12C                                | 110.0      | F4—P1—F2'   | 82.7 (11)  |
| H12A—C12—H12C                               | 109.5      | F3—P1—F2'   | 98.8 (9)   |
| H12B-C12-H12C                               | 109.5      | F1—P1—F2'   | 171.1 (11) |
| C11—C12—H12E                                | 89.0       | F5—P1—F2'   | 79.5 (7)   |
| H12A—C12—H12E                               | 138.1      | F6'—P1—F2'  | 100.1 (11) |
| H12B—C12—H12E                               | 98.8       | F3'—P1—F2'  | 92.4 (9)   |
| C11—C12—H12F                                | 92.2       | F6—P1—F2'   | 105.0 (12) |
| Symmetry codes: (i) $-x$ , $y$ , $-z+3/2$ . |            |             |            |

6

F6

